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Density-functional thermochemistry. I. The effect of the exchange-only 
gradient correction 

Axel D. Becke 
Department a/Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada 

(Received 21 June 1991; accepted 22 October 1991) 

Previous work by the author on diatomic molecules and by others on polyatomic systems has 
reveale~ that Koh~-Sh~m de~sity-functional theory with "gradient corrected" exchange
correlat1On approxImat1Ons gIves remarkably good molecular bond and atomization energies. 
In the present communication, we report the results of an extensive survey of density
functional atomization energies on the 55 molecules of the Gaussian-l thermochemical data 
base of ~ople and co-workers [J. Chern. Phys. 90, 5622 (1989); 93, 2537 (1990)]. These 
calculatIOns ~ave been performed by the fully numerical molecules (NUMOL) program of 
Becke and DIckson [J. Chern. Phys. 92, 3610 (1990)] and are therefore free of basis-set 
uncertainties. We find an average absolute error in the total atomization energies of our 55 test 
molecules of 3.7 kcal/mol, compared to 1.6 kcal/mol for the Gaussian-l procedure and 1.2 
kca1!mol for Gaussian-2. 

I. INTRODUCTION 

Since the seminal work of Hohenberg, Kohn, and 
Sham,. the density-functional theory (DFT) of electronic 
structure has seen significant theoretical and formal ad
vances. 2 No longer reliant solely on the intuitive insights of 
its earliest incarnation, Slater's Xa theory, 3 contemporary 
DFT is built soundly on a physically and mathematically 
rigorous foundation. At the same time, significant computa
tional developments have stimulated a growing interest in 
the application of DFT methods to substantial molecular 
and chemical problems (see Ref. 4 for a good review). 

The workhorse of density-functional quantum chemis
try at present is the so-called "local spin-density" approxi
mation (LSDA) for exchange-correlation energy. Accumu
lated experience over many years has revealed that the 
LSDA gives excellent molecular geometries, vibrational fre
quencies, and single-particle properties,4 but seriously over
estimates molecular bond energies.5,6 In 1985, however, the 
author discovered that relatively simple corrections to the 
LSDA depending on spin-density gradients improved DFT 
bond energies remarkably.7,s Ziegler and co-workers imme
diately applied such "gradient corrections" to a wide variety 
of challenging problems in transition-metal chemistry with 
excellent results.9 Thanks to subsequent improvements in 
their underlying theory and functional forms, exchange-cor
relation gradient corrections are now attracting the atten
tion ofa larger number ofDFT researchers.4 

The impressive evidence of Ziegler and co-workers not
withstanding,9 we believe that a precise and systematic sur
vey of the thermochemical capabilities of density-functional 
theory is desirable, especially with respect to accurately 
known experimental data. Our own previous work has fo
cused onfully numerical, basis-set-free bond energy calcula
tions on homo nuclear diatomic molecules.5-8 With the re
cent extension of our basis-set-free methOdology to 
polyatomic molecules in general,IO-13 we can now expand 
our fully numerical diatomic surveys to include polyatomic 
tests as well. Our "numerical molecules" program system 

(~ub~ed NU~OL), 13 is uniquely suited for benchmark ap
plIcatIOns of thIS type, since the everpresent basis-set trunca
tion error of conventionallinear-combination-of-atomic-or
bitals (LCAO) methods is eliminated. 

The timing for a benchmark study of density-functional 
thermochemistry could not be better. Pople and co
workers 14,15 have recently published the results of extensive 
tests of the "Gaussian-I" (G 1) ab initio thermochemical 
procedure on 55 organic and inorganic systems with accu
rately known experimental atomization energies. Even more 
recently, a revised "Gaussian-2" (G2) procedure has been 
calibrated on the same 55-molecule set. 16 Obviously, a direct 
comparison between contemporary density-functional 
methods and the ab initio Gland G2 procedures would be of 
great interest. We therefore report in the present communi
cation the results offully numerical DFT atomization ener
gy calculations, employing both the LSDA exchange-corre
lation functional itself and a gradient correction for 
exchange only, on the 55 first- and second-row molecules of 
the G 1 data base. 

II. BASIC THEORY 

In this section, the Kohn-Sham formulation of density
functional theory is outlined briefly. Though many alterna
tive DFT formulations are possible, Kohn-Sham theory is 
currently the most popular and the most powerful. The read
er is referred to Ref. 2 for a detailed and comprehensive 
discussion. 

Given an arbitrary N-electron atom or molecule with 
total electronic density p, let us imagine a corresponding 
reference system of ultimate simplicity-a system of N inde
pendent noninteracting electrons in a noninteracting one
body potential V KS yielding the same density p. Then, we 
express the total electronic energy as follows: 

E T. f V d 3 1 f f p(rl )p(r2 ) 
total = 0 + P nue r + -

2 r12 

(1) 
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2156 Axel D. Becke: Density-functional thermochemistry. I 

where To is the kinetic energy of the noninteracting refer
ence system, the second and third terms are the nuclear in
teraction energy and the classical electrostatic self-interac
tion energy, respectively, and the last term Exc is the 
density-functional exchange-correlation energy. The nonin
teracting reference orbitals tP; satisfy, by definition, the fol
lowing independent-particle Schrodinger equation: 

- !V2tP; + VKS tP; = E;tP; (2) 

with the local, one-body Kohn-Sham potential VKS fixed by 
our original assumption that the noninteracting density 

(3) 

equals the density of the fully interacting system. Equation 
( I), in fact, defines the exchange-correlation energy Exc. 
Consequently, Exc contains a great deal of information, in
cluding all the effects of two-body exchange and dynamical 
correlations, and a kinetic energy component as well. 

Nevertheless, it can be shown I that Exc depends 
uniquely on the total electronic density P and that the Kohn
Sham potential is given by 

VKS = Vnuc + Vel + Vxc , 

where 

and 

8Exc 
Vxc =--

8p 

(4) 

(5) 

(6) 

with Eq. (6) representing the functional derivative of Exc 
with respect to p. These equations are generalized easily to 
spin unrestricted cases also (i.e., Pa =/=PfJ' where a and fJ 
denote up and down electron spins) if two Kohn-Sham po
tentials V~s are admitted, one for each spin 0', with V~c the 
functional derivative of Exc with respect to the spin density 
PU' 

Moreover, Exc is rigorously related l7
,l8 to a two-elec-

tron exchange-correlation "hole" function hxc (1,2) by the 
following two-electron integration: 

E - I ff P(I)h xc (1,2) d 3 d 3 xc -- r l r2 , 
2 rl2 

(7) 

where hxc is determined by quantum mechanical pair prob
abilities and an integration over interelectronic coupling 
strength. Unfortunately, first-principles evaluation of ex
change-correlation holes is intractable in all but very trivial 
systems. Therefore, despite the rigor of this general formal
ism, its practical value is not immediately obvious. 

It is known, however, that exchange-correlation holes 
satisfy a variety of simple yet restrictive global constraints on 
such properties as normalization, limiting behavior for small 
and large r 12 , cusp conditions, scaling conditions, etc. No
tice, also, that the r2 integration in Eq. (7) samples only the 
spherical average of hxc (1,2) about the reference point r l 

and hence the details of its angular dependence are unimpor
tant. Thus, global constraints can be used as guides to con
struct spherically symmetric hole-function models and asso-

ciated energy approximations. To the extent that known 
constraints contain the essential physics of exchange and 
correlation phenomena, hole-function models within the 
Kohn-Sham formalism provide a simple and convenient al
ternative to traditional ab initio technology. 

The simplest and most popular exchange-correlation 
approximation, the "local spin-density" approximation 
(LSDA) has the form 

E~~DA = f exc [Pa (r),PfJ(r) ]d 3r, (8) 

where the integrand exc is the exchange-correlation energy 
density of a uniform electron gas with spin densities Pa (r) 
and PfJ (r) equal to their local atomic or molecular values. 
This approximation corresponds to replacement of the exact 
exchange-correlation hole at reference point r with a model 
hole from electron gas theory. The functional exc has been 
well characterized by Monte Carlo simulations l9 and we 
employ in the present work the associated parametrization 
ofVosko, Wilk, and Nusair.20 

Of course, an atomic or molecular density is not homo
geneous, even locally, and we thus seek improvements to the 
LSDA incorporating non uniformity information. The sim
plest beyond-LSDA corrections depend on local spin-den
sity gradients in addition to the density itself and will be 
called "gradient corrections" in this communication. These 
have been found particularly effective in the calculation of 
molecular dissociation energies (see Refs. 6-9) and, consid
ering the well-known difficulties of ab initio thermoche
mistry, have given density-functional theory new and excit
ing vigor. We shall not review the extensive and growing 
literature of exchange-correlation gradient corrections here, 
but shall concentrate on a recent correction ofthe "exchange 
only" type with particularly interesting properties. 

For reference points asymptotically far from a finite sys
tem, as in the exponential tails of atomic and molecular 
charge distributions, the exchange-correlation energy inte
gral assumes the limiting form 

Exc (r-+ 00) = - ~ff!....d3r 
2 r 

(9) 

which is a simple consequence of the well-known hole nor
malization constraint 

f hxc (1,2)d 3r 2 = - 1 (10) 

valid at any reference point 1. Equation (9) follows immedi
ately from Eqs. (7) and (10) under consideration that the 
exchange-correlation hole remains "attached" to a finite sys
tem for reference points approaching infinity. It is a major 
and well-known failure of the LSDA that this correct 
asymptotic behavior is not reproduced. Given, therefore, 
that molecular bond formation essentially involves the over
lap of atomic exponential tails, we begin to understand why 
the LSDA describes bond dissociation energies poorly. 

On the other hand, the following gradient-corrected ex
change-correlation functional correctly reproduces, by de
sign,6,21 the exact asymptotic limit ofEq. (9): 
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(11) 

where Xa is a dimensionless non uniformity parameter de
fined by 

IVp,,1 
xcr=~ 

Per 
(12) 

and b is a constant of value 0.0042 a.u. as determined by a fit 
to exact Hartree--Fock exchange energies of the noble gas 
atoms He through Rn.21 The reader may easily verify that, 
on substitution of an exponential tail density into the above 
expression, one obtains precisely Eq. (9) in the r- 00 limit. 

Note that the correction of Eq. (11) is an "exchange 
only" correction in its dimensionality (or equivalently, its 
scaling properties22 

) and its trivial spin dependence (i.e., a 
sum of two distinct terms, one for each spin). It is the only 
reported exchange-correlation correction of the gradient 
type which reproduces the exact asymptotic limit ofEq. (9). 
Also, the fact that Eq. (11) contains only a single free pa
rameter b highly recommends this particular functional over 
several other functionals, containing two or more param
eters, suggested in the literature.23 

Dynamical correlation corrections are considerably 
more complicated in their scaling properties and their spin 
dependence and are not considered in the present work. For
tunately, previous work on diatomic systems has indicated 
that their influence on thermochemical calculations is rela
tively small compared to the exchange correction6 and may 
therefore be neglected in a first approximation. Let us also 
point out that in previous work we have often espoused7

,8,13 

the use of the correlation self-interaction correction of Stoll, 
Pavlidou, and Preuss24 (SPP). On the basis of unpublished 
work by us and our collaborators, it appears that the SPP 
correction, when combined with gradient corrections for ex
change, yields much too long molecular bond lengths despite 
its excellent bond energies. We therefore emphasize that the 
present work employs the "full" LSDA for dynamical corre
lation with no corrections whatsoever. 

For the benefit of interested readers, we list, in Tables I 
and II, density-functional exchange and correlation energies 
of the present model for all first- and second-row atoms from 
H through Ar. These data are obtained from spherically 
symmetrized atomic Hartree-Fock spin densities and have 
been compiled previously in Refs. 18 (correlation) and 21 
(exchange). The quality of the gradient-corrected exchange 
energies of Table I is excellent, whereas the LSDA correla
tion energies in Table II tend to overestimate the exact re
sults by a factor of roughly 2. The physical origin of this well
known discrepancy has been elucidated by Stoll and 
co-workers24 and arises from the fact that the uniform-gas 
correlation hole compensates, in part, for long-range oscilla
tions in the uniform-gas exchange hole. Separation of the 
total LSDA exchange-correlation energy into an "ex
change" and a "correlation" piece thus introduces an arti
fact into each component which renders comparisons such 
as those of Table II somewhat ambiguous. We should not, 
therefore, be overly alarmed by the apparent discrepancies in 

TABLE 1. Atomic exchange energies (a.u.). 

Atom Exacta LSDAb GC' 

H -0.313 - 0.268 -0.310 
He - 1.026 - 0.884 - 1.025 
Li - 1.781 - 1.538 - 1.775 
Be - 2.667 - 2.312 - 2.658 
B - 3.744 - 3.272 - 3.728 
C - 5.045 - 4.459 - 5.032 
N - 6.596 - 5.893 - 6.589 
0 - 8.174 -7.342 - 8.169 
F -10.00 - 9.052 - 10.02 

Ne - 12.11 - 11.03 - 12.14 
Na -14.02 - 12.79 - 14.03 
Mg - 15.99 -14.61 -16.00 
Al - 18.07 - 16.53 - 18.06 
Si - 20.28 - 18.59 - 20.27 
P - 22.64 - 20.79 - 22.62 
S - 25.00 - 23.00 - 24.98 
CI - 27.51 - 25.35 - 27.49 
Ar - 30.19 - 27.86 - 30.15 

a Exact-exact Hartree-Fock (from Ref. 21). 
b LSDA-Ioca1 spin-density approximation. 
cGC-with gradient correction ofEq. (11). 

Table II, but should view the functional ofEq. ( 11 ) as a total 
exchange-correlation model. 

III. THE PRESENT CALCULATIONS 

The present calculations actually serve a double pur
pose. As implied by its title and as described in Sec. I, this 
paper is concerned primarily with the systematic testing of 
density-functional thermochemistry on the 55 molecules of 
the Gaussian-l data base. 14,15 The Gl data base has been 
carefully selected by its authors to include only molecules 
with experimental total atomization energies known to with
in I kcal/mol. It is therefore of obvious and great value for 
the testing of quantum thermochemical methods. 

Also, however, these calculations constitute the first ex-

TABLE II. Atomic correlation energies (a.u.). 

Atom Exact" LSDAb 

H 0.000 - 0.022 
He - 0.042 -0.113 
Li -0.046 -0.151 
Be - 0.094 - 0.225 
B -0.125 - 0.291 
C -0.157 - 0.360 
N - 0.189 - 0.430 
0 - 0.258 - 0.539 
F - 0.322 - 0.644 

Ne - 0.390 - 0.746 
Na - 0.398 - 0.805 
Mg -0.444 - 0.892 
Al - 0.479 - 0.966 
Si - 0.520 - 1.042 
P - 0.553 -1.119 
S - 0.634 - 1.227 
C1 -0.714 - 1.330 
Ar - 0.787 - 1.431 

"Exact (from Ref. 18). 
b LSDA-local spin-density approximation. 
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tensive test of our new and unique basis-set-free NUMOL 
program system. IO 

... 
13 Since its introduction in 1989,13 the 

NUMOL program has undergone steady improvement and 
enhancement. Discussion of technical developments is de
ferred, however, to other publications. For the present pur
pose, it is sufficient to note that our computational method is 
fuIly numerical and completely basis-set free. AIl requisite 
procedures (numerical integration,1O solution of Poisson's 
equation for the electronic Coulomb potential, II and solu
tion ofSchrodinger's single-particle equation for the molec
ular orbitals l2

) are carried out by separation into indepen
dent single-center problems using a "smooth" single-center 
partitioning scheme. The resulting atomiclike problems are 
handled easily using standard numerical methods in spheri
cal polar coordinates and reassembled when necessary by 
cubic spline interpolation. The molecular orbitals are com
puted by an iterative perturbation-variation technique
first-order orbital corrections are obtained from numerical 
solution of an inhomogeneous Kohn-Sham equation and 
then mixed variationaIly with the starting orbitals. This nu
merical perturbation-variation cycle is then iterated as part 
of the normal self-consistent field (SCF) iteration proce
dure. Interested readers wiII find further details in Ref. 13. 

Since our method is basis-set free, Hellmann-Feynman 
forces should be calculable by straightforward numerical 
electrostatic integration, provided, of course, that sufficient 
numerical precision is achieved overall. Indeed, tests of our 
numerically derived forces indicate that their quality is quite 
adequate for the purpose of geometry optimization2S and 
NUMOL has recently been programmed to optimize molec
ular geometries using either internal or Cartesian coordi
nates at the LSDA theoretical level. Special features of our 
optimization schemes will be discussed elsewhere. Suffice it 
to say that all 55 molecular structures of the present survey 
were optimized successfully by our Cartesian algorithm and 
comparisons of their geometries with experiment will be pro
vided in future publications. 

Our procedure for thermochemical energy studies is ex
tremely simple. First, molecular geometries are optimized at 
the LSDA level and the gradient correction ofEq. (11) then 
added in a "post-LSDA" manner at the optimized LSDA 
geometry. This is a matter of convenience, as the gradient 
part of the functional derivative of Eq. (6) is awkward to 
calculate by the finite-difference methods of NUMOL, espe
ciaIly in the sensitive asymptotic limit. Unpublished work by 
the author and a very recent report of Fan and Ziegler26 have 
justified the post-LSDA approach. Second, zero-point vibra
tional energy corrections must be considered in order to 
make comparisons with experiment. These have been tabu
lated in the Gaussian-l papersl4

,IS and have been adopted 
without change in the present work. Finally, "nonspherical 
corrections" must be made for our reference atoms.27 These 
can be quite substantial in gradient-corrected density-func
tional theories (e.g., of the order of 10 kcallmol in the case of 
oxygen) and, therefore, our reference atomic energies have 
been calculated using nonspherical open-shell densities de
rived from nonspherical self-consistent fields by NUMOL 
computations on appropriately populated dimers at large 
internuclear separations. 

Note also that many ofthe molecules of the G 1 data base 
(and, of course, our reference atoms) have open-sheIl elec
tronic structures. These have been treated using spin-unres
tricted Kohn-Sham theory, outlined in Sec. II, which is 
analogous to the familiar unrestricted Hartree-Fock 
(UHF) procedure of ab initio theory. 

IV. RESULTS AND CONCLUSIONS 

Total atomization energies of the molecules of the G I 
data base are listed in Tables III and IV for first- and secondo.. 
row systems, respectively. We give results for both the local 
spin-density approximation itself and for the LSDA plus the 
gradient correction of Eq. (11) (denoted LSDA·GC in the 
tables). Absolute errors with respect to experiment are indi
cated in brackets. 

A variety of meshes were employed in these computa
tions to establish a reasonable numerical error estimate. The 
number of radial points on each nucleus has been varied 
from 5X (Z2l3 + 1) to lOX (Z2I3 + 1), where Z is the nu
clear charge, and two classes of angular meshes consisting of 
50/110 and 110/194 points for nuclei with Z.;;;4/Z>5, re
spectively, have also been tested. As a result of our trials, we 
believe that the total atomization energies reported in Tables 

TABLE III. Atomization energies Do (kcal/mol) of first-row molecules. 

Expt.a LSDAb LSDA-GCC 

LiH 56.0 58.9 (2.9) 61.7 (5.7) 
Bell 46.9 57.7 (10.8) 57.9 (11.0) 
Cll 79.9 88.0 (8.1 ) 80.4 (0.5) 
Cll2 (trip.) 179.6 202.7 (23.1 ) 184.6 (5.0) 
CH2 (sing.) 170.6 188.9 (18.3) 174.9 (4.3) 
CH3 289.2 322.0 (32.8) 295.9 (6.7) 

CH. 392.5 435.7 (43.2) 397.7 (5.2) 
Nll 79.0 91.0 (12.0) 86.7 (7.7) 
NH2 170.0 196.6 (26.6) 181.1 (11.1 ) 

NH3 276.7 316.8 (40.1) 285.1 (8.4) 
OH 101.3 118.3 (17.0) 100.8 ( -0.5) 
H2O 219.3 253.8 (34.5) 222.4 (3.1) 
HF 135.2 156.7 (21.5) 136.7 ( 1.5) 
Li2 24.0 23.1 ( -0.9) 21.1 (- 2.9) 
LiF 137.6 154.2 (16.6) 138.8 ( 1.2) 
C2ll2 388.9 443.6 (54.7) 387.6 ( -1.3) 
C2H, 531.9 601.8 (69.9) 532.4 (0.5) 
C2H. 666.3 749.7 (83.4) 665.8 ( -0.5) 
CN 176.6 217.1 (40.5) 182.7 (6.1) 
HCN 301.8 350.8 (49.0) 306.7 (4.9) 
CO 256.2 295.9 (39.7) 253.4 ( -2.8) 
HCO 270.3 325.0 (54.7) 274.6 (4.3) 
H2 CO 357.2 417.6 (60.4) 359.8 (2.6) 
CH30H 480.8 555.7 (74.9) 480.9 (0.1) 

N2 225.1 264.1 (39.0) 230.6 (5.5) 
N2H, 405.4 483.8 (78.4) 413.4 (8.0) 
NO 150.1 196.2 (46.1) 154.3 (4.2) 
O2 118.0 172.4 (54.4) 124.8 (6.8) 
H2 0 2 252.3 319.0 (66.7) 255.0 (2.7) 

F2 36.9 76.7 (39.8) 40.2 (3.3) 
CO2 381.9 465.9 (84.0) 381.4 ( -0.5) 

a Expt.-from Refs. 14 and 15. 
bLSDA-local spin-density approximation [Eq. (8) 1. 
e LSDA-GC-post-LSDA gradient corrected [Eq. (11) J. 

J. Chem. Phys., Vol. 96, No.3, 1 February 1992 

 10 June 2024 15:09:22



Axel D. Becke: Density-functional thermochemistry. I 2159 

III and IV have a numerical precision of better than 1 kcall 
mol. All computations were carried out on an IBM RISC 
System/6000 model 320 workstation. 

Notice, first of all, that the LSDA seriously overesti
mates the atomization energies of this study. The worst case 
is CO2 , overbound by 84 kcallmol. Notice also that, in a 
relative sense, the F2 molecule is overbound by over 100%. 
The average absolute error for all 55 molecules in Tables III 
and IV is 36.2 kcallmol (or 1.6 eV, 151 kJ/mol). Clearly, 
the local spin-density approximation is inadequate for ther
mochemical purposes. 

Addition of the gradient correction (LSDA-GC), on 
the other hand, improves our results dramatically. Now the 
largest errors are of the order of 11 kcallmol for, interest
ingly enough, some of the "lightest" molecules in Table III 
(BeH and NH2 ). This emphasizes an aspect of density-func
tional theory that is, at the same time, its great weakness and 
yet its great strength-namely, OFT does not discriminate 
between molecules containing light atoms and those con
taining heavy atoms. DFT computations can be carried out 
with uniform ease anywhere in the Periodic Table (witness, 
e.g., the applications collected in Ref. 4). 

The average absolute error for the LSDA-GC results is 
3.7 kcallmol (or 0.16 eV, 16 kJ/mol). This is ten times 
smaller than the error of the LSDA and, in our opinion, very 
respectably small by most other standards. Our theory does 
not match the accuracy of the Gl and G2 procedures, with 
average absolute errors of 1.6 and 1.2 kcallmol, respectively, 
but is not inordinately worse. In defense of the density-func-

TABLE IV. Atomization energies Do (kcaVrnol) of second-row molecules. 

Expt.a LSDAb LSDA-GC' 

SiH, (sing.) 144.4 159.1 (14.7) 150.0 (5.6) 

SiH, (trip.) 123.4 139.7 (16.3) 128.4 (5.0) 

SiH) 214.0 233.8 (19.8) 218.8 (4.8) 

SiH. 302.8 328.0 (25.2) 308.3 (5.5) 

PH, 144.7 165.6 (20.9) 152.4 (7.7) 

PH) 227.4 255.1 (27.7) 232.1 (4.7) 

H,S 173.2 197.3 (24.1) 174.3 (1.1 ) 

HCl 102.2 116.4 (14.2) 101.7 ( -0.5) 
Na, 16.6 19.9 (3.3) 16.3 ( - 0.3) 

Si, 74.0 92.5 (18.5) 73.4 ( - 0.6) 

P2 116.1 142.4 (26.3) 114.7 ( - 1.4) 

S, 100.7 134.4 (33.7) 100.4 ( - 0.3) 

CI2 57.2 82.7 (25.5) 51.7 ( - 5.5) 
NaCI 97.5 102.8 (5.3) 91.0 (- 6.5) 
SiO 190.5 222.4 (31.9) 189.1 ( - 1.4) 
CS 169.5 200.3 (30.8) 165.4 ( - 4.1) 
SO 123.5 166.2 (42.7) 126.6 (3.1) 
CIO 63.3 104.1 (40.8) 64.9 ( 1.6) 
CIF 60.3 94.2 (33.9) 59.8 ( - 0.5) 
Si2 H. 500.1 549.4 (49.3) 501.3 ( 1.2) 

CHjCI 371.0 424.9 (53.9) 367.4 (- 3.6) 

CHjSH 445.1 508.6 (63.5) 441.6 (- 3.5) 

HOCI 156.3 203.3 (47.0) 155.6 ( - 0.7) 
SO, 254.0 332.5 (78.5) 249.9 (- 4.1) 

• Expt.-frorn Refs. 14 and 15. 
bLSDA-Iocal spin-density approximation [Eq. (8)]. 
C LSDA-GC-post-LSDA gradient corrected [Eq. (1l) J. 

tional approach, however, we reiterate that DFT computa
tions of similar quality are possible and, indeed, routine 
throughout the Periodic Table (see Ref. 9). Also, we point 
out that the procedure of the present work is considerably 
simpler than the Gland the G2 procedures, which involve 
basis-set corrections, M0ller-Plesset corrections, a quadrat
ic configuration interaction (CI) correction, and a fitted 
"higher level" correction. The present NUMOL calcula
tions need no basis-set corrections, are based on an extreme
ly simple exchange-correlation functional, and involve no 
adjustments of any kind. 

Gradient corrections for dynamical correlation have 
not been considered in the present work. As discussed in Sec. 
II, proper treatment of atomic and molecular tail behavior is 
of primary concern in descri!>ing bond dissociation, and the 
quality of the present and previous6 results supports this 
view. Nevertheless, the fine tuning afforded by correlation 
corrections will be studied in future work. Several interest
ing and viable approaches to the density-functional theory of 
dynamical correlations are currently under discussion in the 
literature. 18.28-31 It is not yet clear, however, which of the 
existing functionals is preferable and we feel that further 
progress and consolidation is urgently required in this area. 
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